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Abstract
A framework for deriving equations of motion for constrained quantum systems
is introduced and a procedure for its implementation is outlined. In special
cases, the proposed new method, which takes advantage of the fact that the
space of pure states in quantum mechanics has both a symplectic structure
and a metric structure, reduces to a quantum analogue of the Dirac theory of
constraints in classical mechanics. Explicit examples involving spin- 1

2 particles
are worked out in detail: in the first example, our approach coincides with a
quantum version of the Dirac formalism, while the second example illustrates
how a situation that cannot be treated by Dirac’s approach can nevertheless be
dealt with in the present scheme.

PACS numbers: 03.65.Ca, 02.40.Yy

1. Introduction

Recently, there has been renewed interest in understanding the properties of constrained
quantum dynamics [1–4]. The key idea behind quantum constraints is the fact that the space
of pure states (rays through the origin of Hilbert space) is a symplectic manifold, and hence
that Dirac’s theory of constraints [5, 6] in classical mechanics is applicable in the quantum
regime. The quantum state space is also equipped with a metric structure—generally absent
in a classical phase space—induced by the probabilistic features of quantum mechanics. In
the context of analysing constrained quantum motions it is therefore natural to examine the
theory from the viewpoint of metric geometry, as opposed to a treatment based entirely on
symplectic geometry. This is the goal of the present paper, which extends our earlier work [4]
on the symplectic approach to quantum constraints.

The metric approach that we propose is not merely a reformulation of the Dirac formalism
using the quantum symplectic structure. Indeed, there are two distinct advantages in the metric
approach over the symplectic approach: (a) the metric approach to quantum constraints is
generally speaking more straightforward to implement, even in situations where the constraints
can be treated by the symplectic method; and (b) there are nontrivial examples of constraints
that cannot be implemented in the symplectic approach but can be implemented in the metric
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approach. Our plan is first to outline the general metric approach to quantum constraints,
and then to consider specific examples. We also derive a necessary condition for the metric
approach to be equivalent to the symplectic formalism. The first example that we consider
concerns the system consisting of a pair of spin- 1

2 particles. We impose the constraint that the
state should lie on the product subspace upon which all the energy eigenstates lie. This is the
example considered in [1, 4] using the symplectic approach. Here we analyse the problem
using the metric approach and show that the constrained equations of motion reduce to those
obtained in [4]. The second example concerns a single spin- 1

2 particle, and we impose the
constraint that an observable that does not commute with the Hamiltonian must be conserved.
This is perhaps the simplest example of a quantum constraint that is not evidently tractable
in the symplectic approach but nevertheless can be readily dealt with by use of the metric
approach.

2. Geometry of quantum state space

We begin by remarking that the space of pure quantum states associated with a Hilbert space of
dimension n is the projective Hilbert space Pn−1 of dimension n−1 (see [7–11] and references
therein). We regard Pn−1 as a real even-dimensional manifold �, and denote a typical point
in �, corresponding to a ray in the associated Hilbert space, by {xa}a=1,2,...,2n−2. It is well
known that � has an integrable complex structure. Since the complex structure of � plays an
important role in what follows, it may be helpful if we make a few general remarks about the
relevant ideas.

We recall that an even-dimensional real manifold M is said to have an almost complex
structure if there exists a global tensor field J a

b satisfying

J a
c J c

b = −δa
b . (1)

The almost complex structure is then said to be integrable if the Nijenhuis tensor

Nc
ab = J c

d ∇[aJ
d
b] − J d

[a∇|d|J c
b] (2)

vanishes [12]. It is straightforward to check that Nc
ab is independent of the choice of

symmetric connection ∇a on M. The vanishing of Nc
ab can be interpreted as follows. A

complex vector field on M is said to be of positive (resp., negative) type if J a
b V b = +iV a

(resp., J a
b V b = −iV a). The vanishing of Nc

ab is a necessary and sufficient condition for the
commutator of two vector fields of the same type to be of that type.

A Riemannian metric gab on M is said to be compatible with an almost complex structure
J a

b if the following conditions hold: (i) the metric is Hermitian so that

J a
c J b

d gab = gcd, (3)

and (ii) the almost complex structure is covariantly constant:

∇aJ
b
c = 0, (4)

where ∇a is the torsion-free Riemannian connection associated with gab. An alternative
expression for the Hermitian condition is that �ab = −�ba , where

�ab = J c
a gbc. (5)

It follows that ∇aJ
b
c = 0 if and only if ∇a�bc = 0. However, if the almost complex structure

is integrable, then a sufficient condition for ∇aJ
b
c = 0 is ∇[a�bc] = 0. This follows on account

of the identity

∇a�bc = 3
2J

p

b J q
c ∇[a�pq] − 3

2∇[a�bc] + 1
4�adN

d
bc. (6)
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A manifold M with an integrable complex structure and a compatible Riemannian structure is
called a Kähler manifold. The antisymmetric tensor �ab is then referred to as the ‘fundamental
two-form’ or Kähler two-form. It follows from the definition of �ab along with the Hermitian
condition on gab that �ab itself is Hermitian in the sense that

J a
c J b

d �ab = �cd. (7)

Furthermore, we find that the tensor �ab defined by

�ab = gacgdb�cd (8)

acts as an inverse to �ab. In particular, we have

�ac�bc = δa
b . (9)

In the case of quantum theory there is a natural Riemannian structure on the manifold �,
called the Fubini–Study metric. If x and y represent a pair of points in �, and |ψ(x)〉 and
|ψ(y)〉 are representative Hilbert space vectors, then the Fubini–Study distance between x and
y is given by θ , where

〈ψ(y)|ψ(x)〉〈ψ(x)|ψ(y)〉
〈ψ(x)|ψ(x)〉〈ψ(y)|ψ(y)〉 = 1

2
(1 + cos θ). (10)

The Kähler form �ab can be used to define a one-parameter family of symplectic structures
on �, given by κ�ab, where κ is a nonvanishing real constant. In quantum mechanics, the
symplectic structure defined by

ωab = 1
2�ab (11)

plays a special role. In particular, if we define the inverse symplectic structure by ωab = 2�ab

so that ωacωbc = δa
b , and if we choose units such that h̄ = 1, then we find that the Schrödinger

trajectories on � are given by Hamiltonian vector fields of the form

ẋa = ωab∇bH, (12)

where

H(x) = 〈ψ(x)|Ĥ |ψ(x)〉
〈ψ(x)|ψ(x)〉 . (13)

Thus we see that the expectation of the Hamiltonian operator Ĥ gives rise to a real function
H(x) on �. This function plays the role of the Hamiltonian in the determination of the
symplectic flow associated with the Schrödinger trajectory.

3. Metric formalism for quantum constraints

With these geometric tools in hand we now proceed to formulate the metric approach to
quantum constraints. We consider a quantum system for which the states are subject to a
family of N constraints of the form

	i(x) = 0, (14)

where i = 1, . . . , N . For each value of i the condition 	i(x) = 0 defines a hypersurface
in �. The intersection of the N hypersurfaces thus defined thereby determines the constraint
surface K ∈ � within which the motion of the state is to be restricted. From a mathematical
perspective, it is most natural to consider the case where the constraint surface K is a manifold
of codimension N in �; but there are also situations arising in a physical context in which it
seems appropriate to allow for the possibility that K is singular, and we shall examine some
aspects of that case as well.

3
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In the situation where K is nonsingular and is of codimension N, we require that the N
vector fields given by ∇a	

i for i = 1, . . . , N are nonvanishing when restricted to K, and are
linearly independent at each point of K. The tangent plane to K at a given point x in K is then
spanned by a system of 2n − 2 − N linearly independent vectors in the tangent space of � at
the point x with the property that they are each orthogonal to the N gradient vectors ∇a	

i at
that point.

To enforce the constraints in the metric approach, we assume that the initial state of the
system lies in K, and that the modified dynamics of the quantum state trajectory are such that
they can be obtained from the original Hamiltonian equations of motion if we remove from
the tangent vector ẋa those components that are normal to the constraint surface. It should be
evident that under these assumptions the equations of motion then take the form

ẋa = ωab∇bH − λig
ab∇b	

i, (15)

where ωab is the inverse quantum symplectic structure and where the scalars {λi(x)}i=1,...,N

constitute a set of Lagrange multipliers. Here we have introduced for convenience the use of
the summation convention for the lowercase roman ‘constraint’ indices. In order to determine
{λi} we consider the condition 	̇j = 0 that must hold at each point along the trajectory if the
trajectory is to remain in K. By use of the chain rule this condition can be expressed in the
form

ẋa∇a	
j = 0. (16)

Substitution of (15) into (16) then gives

ωab∇a	
j∇bH − λig

ab∇a	
j∇b	

i = 0. (17)

To simplify (17) let us define a symmetric matrix Mij by setting

Mij = gab∇a	
i∇b	

j . (18)

We observe that if K is nonsingular and of codimension N, then Mij has a nonvanishing
determinant at each point of K. For suppose that at some point x of K the determinant of
Mij vanished: then there would exist a null eigenvector ξi such that Mijξi = 0 at x. But that
would imply Mijξiξj = 0 at x and hence ξi∇a	

i = 0, which contradicts the assumption that
the N gradient vectors ∇a	

i are linearly independent at each point of K. If the matrix Mij is
nonsingular, we write Mij for its inverse. Then MikM

kj = δ
j

i and we can solve (17) for λi to
find

λi = Mijω
ab∇a	

j∇bH. (19)

Substituting this expression for λi back into (15) we find after some rearrangement that the
constrained equations of motion are given by the following modified dynamics:

ẋa = ωab∇bH − gab∇b	
i∇c	

jMijω
cd∇dH. (20)

These are the nonlinear equations of motion satisfied by a quantum system constrained to a
nonsingular submanifold of the quantum state space.

As we remarked above, there are situations of interest where it is natural to consider
the possibility that K might be singular. In that case, the analysis above remains valid at
least locally on K if the initial state of the system is a nonsingular point of K. An important
example arises when the constraints are associated with quantum observables. In particular,
let the constraint hypersurfaces be given by the level surfaces of the expectation values of a set
of quantum observables. Thus for each value of i we have an observable 	̂i such that 	i(x)

is given by the expectation of the observable 	̂i in the pure state corresponding to the point x
in �.

4
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The analysis of the singularities that can arise in such a system is rather delicate and
is of great interest. In the case N = 1, the constraint is given by the requirement that the
system should remain on the surface defined by the vanishing of the expectation of a single
quantum observable. In general, if such a surface is of dimension 1 then it is nonsingular; but
if the observable admits an eigenstate with a null eigenvalue, then that state corresponds to
a singular point of the constraint surface. More generally, when N is greater than 1, Mij for
each i, j represents the quantum covariance between the observables 	̂i and 	̂j in the state
represented by the point x; that is to say:

Mij = 〈	̂i	̂j 〉 − 〈	̂i〉〈	̂j 〉. (21)

In the case of a pair of observables, say, 	̂1 = Â and 	̂2 = B̂, we have

Mij =
(

var(Â) cov(Â, B̂)

cov(Â, B̂) var(B̂)

)
. (22)

The determinant � of Mij is thus given by

� = var(Â) var(B̂) − (cov(Â, B̂))2. (23)

It is then an exercise to show that � vanishes only at states that are null eigenstates of some
linear combination of Â and B̂. Thus even if neither of the surfaces A(x) = 0 and B(x) = 0
are singular at the points of their intersection, the intersection itself may be singular at an
isolated point. In what follows, we shall mainly be looking at the behaviour of solutions to
the constraint equations away from such singular points.

4. Equivalence of metric and symplectic approaches

Before considering specific examples of constrained systems that can be described using the
present approach, it will be of interest to ask how this framework might be related to the
approach of Dirac [5, 6], or more precisely, its quantum counterpart [1, 2, 4] which we shall
refer to as the symplectic approach. In the symplectic approach, the constrained equations
of motion can be expressed in the same form as (12), but with a modified inverse symplectic
structure ω̃ab in place of ωab, which in effect is the induced symplectic form on the constraint
surface [4]. Thus, we would like to know under what condition the metric approach leading
to the right-hand side of (20) also reduces to a modified symplectic flow of the form ω̃ab∇bH ,
where H is the same Hamiltonian as the one in the original Schrödinger equation (12).

Intuitively, we would expect that when there is an even number of constraints, the two
methods might become equivalent. In what follows we shall establish a sufficient condition
under which the symplectic approach and the metric approach are equivalent.

In order to investigate whether (20) can be rewritten in the form

ẋa = ω̃ab∇bH (24)

for a suitably defined antisymmetric tensor ω̃ab, we rearrange terms in (20) to write

ẋa = (ωad − Mijg
ab∇b	

iωcd∇c	
j )∇dH

= (ωad − μbcg
abωcd)∇dH, (25)

where we have defined

μbc = Mij∇b	
i∇c	

j . (26)

It follows that we need to find whether the expression

ω̃ab = ωab − gadωcbμdc (27)

5
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defines a symplectic structure on the subspace of the state space. Since the symplectic structure
ωab is antisymmetric, we shall examine under which condition ω̃ab is antisymmetric. This is
equivalent to asking whether the following relation holds:

gacωbdμcd
?= −gbcωadμcd . (28)

Suppose that (28) is valid. Then using (5) and (11) we can rewrite (28) as

gacgbeJ d
e μcd = −gbcgaeJ d

e μcd . (29)

Transvecting this with gf a and relabelling the indices we obtain

gbeJ d
e μad = −gbcJ d

a μcd, (30)

from which it follows that

J d
b μad = −J d

a μbd . (31)

Multiplying both sides of (31) with J a
c we find that condition (28) is equivalent to

J c
a J d

b μcd = μab, (32)

where we have used (1) and the symmetry of μab. It follows that for the metric formulation of
the constrained motion (20) to be expressible in the Hamiltonian form (24) with the original
Hamiltonian H, the matrix μbc defined by (26) must be Hermitian. This is the sufficiency
condition that we set out to establish. Let us now examine specific cases to gain insight into
this condition.

The case of a single constraint. In general, the J -invariance condition (32) need not be
satisfied. One can easily see this by considering the case for which there is only one constraint
given by 	(x) = 0. Then expression (18) becomes a scalar quantity, which we will denote
by M, and thus its inverse is M−1. It follows that

μab = M−1∇a	∇b	. (33)

Substituting this expression for μab into (32) gives us

J c
a ∇c	J d

b ∇d	 = ∇a	∇b	, (34)

which implies that

J c
a ∇c	 = ∇a	, (35)

but this clearly is a contradiction, since the two vectors J c
a ∇c	 and ∇a	 are orthogonal. We

see therefore that in the case of a single constraint, condition (32) is not satisfied, and the
constrained motion (20) cannot be expressed in the Hamiltonian form (24).

The case of two constraints. Let us examine the case in which there are two constraints. As
we shall demonstrate, in this case the J -invariance condition for μbc reduces to a simpler
condition. Let us write 	1 = A and 	2 = B for the two constraints. Then the inverse of the
matrix Mij can be written in the form

Mij = 1

2�
εii ′εjj ′Mi ′j ′

, (36)

where � = det(Mij ), and εij is a totally skew tensor with i, i ′, j, j ′ = 1, 2. Substituting (36)
into (26) we find

μbc = Mij∇b	
i∇c	

j

= 1

2�
εii ′εjj ′gpq∇p	i ′∇q	

j ′∇b	
i∇c	

j

= 1

2�
εii ′∇b	

i∇p	i ′εjj ′∇c	
j∇q	

j ′
gpq

= 1

2�
τbpτcqg

pq, (37)

6
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where we have defined

τab = εij∇a	
i∇b	

j . (38)

In order for (37) to satisfy (32) we thus require that

J b
a τbc = ±τabJ

b
c , (39)

where we have substituted (37) into condition (32) and used J b
pJ c

q gpq = gbc. Since

τab = ∇aA∇bB − ∇aB∇bA, (40)

we find that (39) can be written more explicitly in the form

J b
a ∇bA∇cB − J b

a ∇bB∇cA = ± (∇aAJ b
c ∇bB − ∇aBJ b

c ∇bA
)
. (41)

Hence if this condition is satisfied (with either a plus or a minus sign) by the two constraints
A and B, then the constrained equations of motion (20) take the form (24).

Holomorphic constraints. If we choose the constraint function to be holomorphic so that the
two constraints A and B are given by the real and imaginary parts of

	(x) = A(x) + iB(x), (42)

then we can find the form of τab for which (39) holds. To obtain an expression for τab, we
recall that a real vector on � can be decomposed into its complex ‘positive’ and ‘negative’
parts Va = (Vα, Vα′) (cf [13]). These components are given respectively by

(Vα, 0) = 1
2

(
Va − iJ b

a Vb

)
and (0, Vα′) = 1

2

(
Va + iJ b

a Vb

)
. (43)

Hence, Vα′ is the complex conjugate of Vα , and these components are the eigenvectors of the
complex structure J a

b with eigenvalues ±i. It follows that if the vector is of type Va = (Vα, 0)

then J a
b Va = iVb, and similarly if Va = (0, Vα′) then J a

b Va = −iVb. With respect to this
decomposition, the tensor τab can be expressed as

τab =
(

ταβ ταβ ′

τα′β τα′β ′

)
. (44)

We rewrite condition (39) in the form

J c
a J d

b τcd = ±τab (45)

by contracting both sides with J c
d and using (1). In terms of decomposition (44) we find that

in order for (45) to be true we require that τab takes either of the two forms:

τ
(+)
ab =

(
0 ταβ ′

τα′β 0

)
or τ

(−)
ab =

(
ταβ 0
0 τα′β ′

)
, (46)

where the plus and minus in τ
(±)
ab correspond to the required sign in (45). In view of (42) we

can write the two constraints as A(x) = 1
2 (	+ 	̄) and B(x) = − 1

2 i(	− 	̄), where 	̄ denotes
the complex conjugate of 	. Then we have

∇αA = 1
2∇α	, ∇αB = − 1

2 i∇α	,

∇α′A = 1
2∇α′	̄, ∇α′B = 1

2 i∇α′	̄.
(47)

Using these expressions together with (40) we find that the components of τ
(−)
ab all vanish.

Hence, when the two constraints A and B are given by (42), condition (39) is satisfied when
τab takes the form

τab =
(

0 1
2 i∇α	∇β ′	̄

− 1
2 i∇α′	̄∇β	 0

)
, (48)

7
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i.e. when τab = τ
(+)
ab . It follows that the metric formalism associated with holomorphic

constraints of the form (42) is equivalent to the symplectic formalism.
We remark in general that the quadratic form ω̃ab acting from the right annihilates the

vector ∇a	
k normal to the constraint surface. This can be verified explicitly as follows:

ω̃ad∇a	
k = ωad∇a	

k − Mijg
ab∇b	

i∇a	
kωcd∇c	

j

= ωad∇a	
k − MijM

kiωcd∇c	
j

= ωad∇a	
k − ωad∇a	

k

= 0, (49)

since gab∇a	
k∇b	

i = Mki and MijM
ki = δk

j . This condition, of course, is equivalent to the
condition that ẋa∇a	

k = 0. However, in general we have

ω̃ad∇d	
k �= 0, (50)

since ω̃ab is not necessarily antisymmetric. In other words, the vanishing of the left-hand side
of (50) is equivalent to the J -invariance condition for μbc.

In summary, the procedure for deriving the equations of motion in the metric approach to
constrained quantum motion is as follows. First, express the relevant constraints in the form
{	i(x) = 0}i=1,2,...,N . Determine the matrix Mij via (18). Assuming that Mij is nonsingular,
calculate its inverse Mij . Substitute the result into (20) and we recover the relevant equations
of motion. Having obtained the general procedure, let us now examine some explicit examples
implementing this procedure.

5. Illustrative examples

Example 1. The first example that we consider here is identical to the one considered in [4]
involving a pair of spin- 1

2 particles. We consider the subspace of the state space associated
with product states upon which all the energy eigenstates lie. An initial state that lies on this
product space is required to remain a product state under the evolution generated by a generic
Hamiltonian. In this example there are two constraints 	1(x) and 	2(x), and we shall show
that the metric approach introduced here gives rise to a result that agrees with the one obtained
in [4] using the symplectic approach.

Let us work with the coordinates of the quantum state space given by the ‘action-
angle’ variables [4, 14], where the canonical conjugate variables are given by {xa} =
{qν, pν}ν=1,...,n−1 such that when generic pure states |x〉 are expanded in terms of the energy
eigenstates {|Eα〉}α=1,...,n, the associated amplitudes are given by {pν} and the relative phases
by {qν}. In the case of a pair of spin- 1

2 particles we can thus expand a generic state in the form

|x〉 = √
p1 e−iq1 |E1〉 +

√
p2 e−iq2 |E2〉 +

√
p3 e−iq3 |E3〉 +

√
1 − p1 − p2 − p3|E4〉. (51)

This choice of coordinates has the property that if we write

H(p, q) = 〈x|H |x〉
〈x|x〉 (52)

for the Hamiltonian, where |x〉 = |p, q〉, then the Schrödinger equation is expressed in the
form of the conventional Hamilton equations:

q̇ν = ∂H(q, p)

∂pν

and ṗν = −∂H(q, p)

∂qν

. (53)

In the energy basis the Hamiltonian can be expressed as

H =
4∑

α=1

Eα|Eα〉〈Eα|. (54)

8
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It follows that the phase space function H(p, q) for a generic Hamiltonian is given by

H = E4 +
3∑

ν=1

ωνpν, (55)

where ων = Eν − E4. The symplectic structure and its inverse in these coordinate (recall the
relation ωacωbc = δa

b ) are thus given respectively by

ωab =
(
O 1

−1 O

)
and ωab =

(
O 1

−1 O

)
, (56)

where 1 is the 2 × 2 identity matrix and O is the 2 × 2 null matrix.
Let us write {ψα}α=1,2,3,4 for the coefficients of the energy eigenstates in (51). Then the

constraint equation is expressed in the form ψ1ψ4 = ψ2ψ3, which is just a single complex
equation [4]. Thus in real terms we have two constraints given by{

	1 = √
p1p4 cos q1 − √

p2p3 cos(q2 + q3) = 0,

	2 = √
p1p4 sin q1 − √

p2p3 sin(q2 + q3) = 0.
(57)

These constraints are ‘separable’ and can be rewritten as{
	1 = q1 − q2 − q3 = 0,

	2 = p1(1 − p1 − p2 − p3) − p2p3 = 0.
(58)

The next step in the metric approach for the constraint is to work out the expression for
the Fubini–Study metric associated with the line element:

ds2 = 8

[
ψ [α dψβ]ψ̄[α dψ̄β]

(ψ̄γ ψγ )2

]
(59)

in terms of the canonical variables {qν, pν}ν=1,2,3. A calculation shows that

gab =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

4(1 − p1)p1 −4p1p2 −4p1p3 0 0 0
−4p1p2 4(1 − p2)p2 −4p2p3 0 0 0
−4p1p3 −4p2p3 4(1 − p3)p3 0 0 0

0 0 0 1−p2−p3

p1p4

1
p4

1
p4

0 0 0 1
p4

1−p1−p3

p2p4

1
p4

0 0 0 1
p4

1
p4

1−p1−p2

p3p4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (60)

where for simplicity we have denoted p4 = 1 − p1 − p2 − p3. The inverse is thus:

gab =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1−p2−p3

4p1p4

1
4p4

1
4p4

0 0 0
1

4p4

1−p1−p3

4p2p4

1
4p4

0 0 0
1

4p4

1
4p4

1−p1−p2

4p3p4
0 0 0

0 0 0 (1 − p1)p1 −p1p2 −p1p3

0 0 0 −p1p2 (1 − p2)p2 −p2p3

0 0 0 −p1p3 −p2p3 (1 − p3)p3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (61)

To obtain explicit expressions for equations of motion (20) we need to calculate the matrix
Mij and its inverse. A short calculation shows that

Mij =
⎛
⎝

1
4

(
1
p1

+ 1
p2

+ 1
p3

+ 1
p4

)
0

0
p1p4(1 − 4p1p4 + 4p2p3)

+(p2 + p3 − 4p2p3)(p2p3 − p1p4)

⎞
⎠ , (62)

9
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from which its inverse Mij can easily be obtained. Putting these together, we find that the
equations of motion are given by

q̇1 = ω1 − p2p3(1 − 2p1 − p2 − p3)(ω1 − ω2 − ω3)

p2p3(1 − p2 − p3) − p2
1(p2 + p3) + p1(1 − p2 − p3)(p2 + p3)

,

q̇2 = ω2 +
p1p3(1 − p1 − p3)(ω1 − ω2 − ω3)

p2p3(1 − p2 − p3) − p2
1(p2 + p3) + p1(1 − p2 − p3)(p2 + p3)

,

q̇3 = ω3 +
p1p2(1 − p1 − p2)(ω1 − ω2 − ω3)

p2p3(1 − p2 − p3) − p2
1(p2 + p3) + p1(1 − p2 − p3)(p2 + p3)

,

ṗ1 = 0,

ṗ2 = 0,

ṗ3 = 0.

(63)

We can simplify the equations using the relation p1p4 = p2p3, which gives us

q̇1 = ω1 − (1 − 2p1 − p2 − p3)(ω1 − ω2 − ω3),

q̇2 = ω2 + (p1 + p3)(ω1 − ω2 − ω3),

q̇3 = ω3 + (p1 + p2)(ω1 − ω2 − ω3),

ṗ1 = 0,

ṗ2 = 0,

ṗ3 = 0.

(64)

These equations are precisely those obtained in [4] by means of the symplectic formalism.
The solutions to these equations are also worked out in [4].

Before we proceed to the next example, let us verify explicitly that condition (32) for
the equivalence of the metric and symplectic approaches indeed holds in this example. For
this we need to obtain the expression for the complex structure in the canonical coordinates
{qν, pν}ν=1,2,3 using relations (5) and (11). This is given by

J a
b =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1−p2−p3

2p1p4

1
2p4

1
2p4

0 0 0 1
2p4

1−p1−p3

2p2p4

1
2p4

0 0 0 1
2p4

1
2p4

1−p1−p2

2p3p4

2(p1 − 1)p1 2p1p2 2p1p3 0 0 0

2p1p2 2(p2 − 1)p2 2p2p3 0 0 0

2p1p3 2p2p3 2(p3 − 1)p3 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (65)

where as before we write p4 = 1 − p1 − p2 − p3. Substituting this expression and the
expression for μab obtained from (26) into (32), we find that the condition is indeed satisfied.

Example 2. Consider a single spin- 1
2 particle system immersed in a z-field with a unit strength.

The space of pure states for this system is just the surface of the Bloch sphere. The Hamiltonian
of the system is given by Ĥ = σ̂z, where σ̂z is the Pauli spin matrix in the z-direction. We then
impose the constraint that an observable, say σ̂x , that does not commute with the Hamiltonian,
must be conserved under the time evolution.

As before we chose the canonical coordinates xa = {q, p} for the Bloch sphere by setting

|x(p, q)〉 =
√

1 − p|E1〉 +
√

p e−iq |E2〉. (66)

The Hamiltonian in this coordinate system is given by

H(q, p) = 1 − 2p. (67)

10
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Figure 1. A field plot of the dynamics resulting from a system constrained to remain on a surface
defined by 	 = σ̂x when the system evolves according to the Hamiltonian H = σ̂z, where
σ̂x and σ̂z are Pauli matrices. Shown in yellow/light grey lines are the integral curves of the
motion resulting when we choose as the starting positions {θ1, φn} = { 23π

48 , 2πn
24 }n=0,...,23 and

{θ2, φn} = { 25π
48 , 2πn

24 }n=0,...,23. The great circles shown in red/thick grey lines, the equators of
the x and z-axes, consist of fixed points. A state that initially lies on one of these great circles does
not move away from that point, whereas all other states evolve asymptotically towards the fixed
point where the associated integral curve intersects the equator of the sphere.

(This figure is in colour only in the electronic version)

The conservation of σ̂x then reduces to a single real constraint of the form 〈x|σ̂x |x〉 = constant,
which, by use of (66), gives us

	(x) = 2
√

p(1 − p) cos q. (68)

The metric on the Bloch sphere, in terms of our conjugate variables, is given by

gab =
(

4(1 − p)p 0
0 1

(1−p)p

)
. (69)

The symplectic structure has the same form as (56) so we can now calculate the scalar quantity
M defined in (18). A short calculation shows that

M = (1 − 2p)2 cos2 q + sin2 q. (70)

Evidently M vanishes at a pair of points (p, q) = (1/2, 0) and (p, q) = (1/2, π) of �, i.e. the
fixed points of the constrained observable σ̂x . These are also the fixed points of the constrained
motion. Thus assuming M �= 0 and substituting (70) into (20) we find that the equations of
motion are given by

q̇ = −2(1 − 2p)2 cos2 q

(1 − 2p)2 cos2 q + sin2 q
(71)

11
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and

ṗ = 4(1 − 2p)(−1 + p)p sin q cos q

(1 − 2p)2 cos2 q + sin2 q
. (72)

In order to visualize the results we convert the equations of motion into angular coordinates,
using the method outlined in [4]. In angular coordinates (66) is given by

|x(θ, φ)〉 = cos 1
2θ |E1〉 + sin 1

2θ eiφ|E2〉. (73)

Comparing (66) and (73) we make the identification p = sin2 1
2θ and q = −φ. The equations

of motion then become

θ̇ = 1

2

(
sin(2θ) sin(2φ)

1 − sin2 θ cos2 φ

)
and φ̇ = 2 cos2 θ cos2 φ

1 − sin2 θ cos2 φ
. (74)

Figure 1 shows some of the integral curves resulting from the above equations, plotted on the
surface of the Bloch sphere. Equation (74) is valid at all points except where (θ, φ) = (

π
2 , 0

)
and (θ, φ) = (

π
2 , π

)
corresponding to the two fixed points of σ̂x mentioned above.

It is also straightforward to verify that the results above could not have been obtained
using the symplectic approach. The complex structure on the underlying state space of the
spin- 1

2 particle in our coordinate system is given by

J a
b =

(
0 1

2(1−p)p

−2(1 − p)p 0

)
. (75)

Evaluating (26) using (70), and substituting the result along with (75) into (32), we find that
(32) does not hold.
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